General guidelines - Data preparation

Guideline Directory

| General guidelines | Specific guidelines |

| Workflow | Sample analysis | Data preparation |

1. Dataset structure

A huge amount of effort is spent cleaning data to get it ready for analysis, but there has been little research on how to make data cleaning as easy and effective as possible. This paper tackles a small, but important, component of data cleaning: data tidying. Tidy datasets are easy to manipulate, model and visualize, and have a specific structure: each variable is a column, each observation is a row, and each type of observational unit is a table. This framework makes it easy to tidy messy datasets because only a small set of tools are needed to deal with a wide range of un-tidy datasets. This structure also makes it easier to develop tidy tools for data analysis, tools that both input and output tidy datasets. The advantages of a consistent data structure and matching tools are demonstrated with a case study free from mundane data manipulation chores. (Wickham 2014)

Categories

Type of quality systems implemented

  • not specified

Type of studies targeted

  • not specified

Type of organisations targeted

  • not specified

2. Data organisation in spreadsheets

Spreadsheets are widely used software tools for data entry, storage, analysis, and visualization. Focusing on the data entry and storage aspects, this paper offers practical recommendations for organizing spreadsheet data to reduce errors and ease later analyses. The basic principles are: be consistent, write dates like YYYY-MM-DD, don't leave any cells empty, put just one thing in a cell, organize the data as a single rectangle (with subjects as rows and variables as columns, and with a single header row), create a data dictionary, don't include calculations in the raw data files, don't use font color or highlighting as data, choose good names for things, make backups, use data validation to avoid data entry errors, and save the data in plain text file. (Broman et al. 2018)

Categories

Type of quality systems implemented

  • not specified

Type of studies targeted

  • not specified

Type of organisations targeted

  • not specified

3. Computing

Computers are now essential in all branches of science, but most researchers are never taught the equivalent of basic lab skills for research computing. As a result, data can get lost, analyses can take much longer than necessary, and researchers are limited in how effectively they can work with software and data. Computing workflows need to follow the same practices as lab projects and notebooks, with organized data, documented steps, and the project structured for reproducibility, but researchers new to computing often don't know where to start. This paper presents a set of good computing practices that every researcher can adopt, regardless of their current level of computational skill. These practices, which encompass data management, programming, collaborating with colleagues, organizing projects, tracking work, and writing manuscripts, are drawn from a wide variety of published sources from our daily lives and from our work with volunteer organizations that have delivered workshops to over 11,000 people since 2010. (Wilson et al. 2017)

Categories

Type of quality systems implemented

  • not specified

Type of studies targeted

  • not specified

Type of organisations targeted

  • not specified